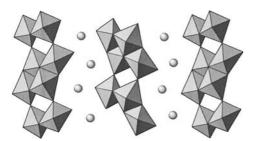
876 Chemistry Letters 2002

A Nanostructured Hybrid Material Synthesized by the Intercalation of Porphyrin into Layered Titanoniobate

Zhiwei Tong,[†] Tetsuya Shichi,[†] Koji Oshika,[†] and Katsuhiko Takagi^{*†,††}
[†] Department of Crystalline Materials Science, Graduate School of Engineering,
Nagoya University, Furocho, Chikusaku, Nagoya 464-8603


^{††} CREST, Japan Science and Technology (JST)

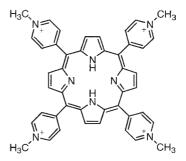
(Received May 10, 2002; CL-020404)

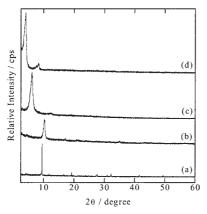
The hybridization of 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)-21H,23H-porphin (TMPyP⁴⁺) into layered titanoniobate (KTiNbO₅), and its structure were studied by means of X-ray diffraction, IR, and polarized and diffuse reflectance UV-vis spectroscopic investigations. The porphyrin molecules incorporated within the intercalation hybrid compound obtained through an intermediary $PrNH_3^+$ -TiNbO₅ hybrid were found to be oriented with a tilt of 46° in a stacked alignment.

Nanostructured materials obtained by the intercalation of porphyrins and metalloporphyrins into two-dimensional matrices have been investigated with the purpose of exploring the photoprocesses^{1–8} and catalytic reactions involved. ^{9,10} Intercalation compounds of layered semiconductors, such as layered titanates and niobates, are able to exhibit unique photochemical and semiconducting properties which allow the intercalation compounds to display a photoinduced host-guest electron transfer, ^{11,12} in contrast to intercalation compounds of clay minerals. In this study, we have designed a novel intercalation compound of KTiNbO₅ with 5,10,15,20-tetrakis(*N*-methyl-pyridinium-4-yl)-21H,23H-porphin (TMPyP⁴⁺), and have also carried out a structural analysis of this new hybrid by means of X-ray diffraction, IR, and polarized and diffuse reflectance UV-vis spectroscopic investigations.

Figures 1 and 2 show the layered structure of $KTiNbO_5^{-13}$ and the molecular structure of $TMPyP^{4+}$, respectively. The metal oxide $KTiNbO_5$ is characterized by a layer structure built up of $(TiNbO_5^{-})$ sheets bound together by K^+ ions with 0.92 nm interlayer spacings, as shown in Figure 1. The ion-exchange properties of the $TiNbO_5^{-}$ layers¹⁴ and the intercalation of aliphatic amines and methylviologen were also investigated. The incorporation of bulky ions into the interlayer spaces of titanoniobate is difficult owing the higher charge densities of the $TiNbO_5^{-}$ layers as compared with other layered semiconductors and smectite clays. However, we have successfully incorporated a cationic porphyrin immobilized into layered titanoniobate and

Figure 1. Structure of KTiNbO₅. Squares represent the TiO_6 (and NbO_6) octahedra, and circles indicate the exchangeable cation K^+ in the interlayers.




Figure 2. Structural formula of the TMPyP⁴⁺ ion.

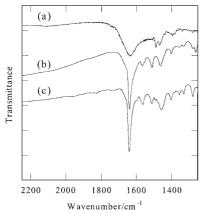
also established its structural characteristics.

KTiNbO₅ was prepared by a conventional solid-state reaction method at 1150 °C for 24 h using K2CO3, TiO2 and Nb₂O₅ as the starting materials. The powder sample was then treated with 2 mol/dm³ HCl for 24 h three times at room temperature (100 cm³ HCl per gram potassium titanobiobate). The titanoniobic acid formed was washed with deionized water until free of Cl⁻, and then dried in air. Preliminary ion-exchange experiments using K⁺ or H⁺-exchanged matrices as precursors failed to intercalate the TMPyP⁴⁺. We finally introduced the propylammonium ions into the HTiNbO₅ matrix by neutralization with propylamine, which was then used for the intercalation of the ionic TMPyP⁴⁺. The titanoniobic acid formed was sealed in an ampoule containing a 50% propylamine aqueous solution (5 cm³ per gram titanoniobic acid) which was allowed to stand for two weeks at 70 °C. The product was then washed with alcohol and dried in air at 25 °C. The propylammonium titanoniobate (PrNH₃⁺TiNbO₅) was again sealed with a 2.5 mmol/dm⁻³ TMPyP⁴⁺ aqueous solution and allowed to stand for two weeks at 70 °C. The amount of porphyrin was 2.5 times as much as the ion-exchange capacity of the titanoniobic acid. The resultant product was washed with deionized water until the TMPyP⁴⁺ absorption could no longer be detected at 425 nm in the filtrate solution. The combustion analysis of the TMPyP⁴⁺-titanoniobate showed a 36% TMPyP $^{4+}$ ion-exchange with HTiNbO $_5$ 1.8H $_2$ O (Anal. Calc. for (TMPyP)_{0.09}H_{0.64}TiNbO₅·1.8H₂O: C, 15.08; H, 2.40; N, 3.20. Found: C, 15.08; H, 2.50; N, 3.26).

The XRD patterns of KTiNbO₅ (Figure 3) indicate that this compound was obtained in a single phase. An exchange of K⁺ with proton caused the basal spacing to be shortened to 0.85 nm. The 2θ angle of the (002) diffraction peaks of the hybrid materials, PrNH₃⁺TiNbO₅ and TMPyP⁴⁺TiNbO₅, were lower than that of HTiNbO₅. These observations confirmed that the interlayer spacing of HTiNbO₅ was topochemically expanded by the reaction with PrNH³⁺ and TMPyP⁴⁺. The basal spacing of HTiNbO₅ and its intercalation compounds, and the Δ d values are shown in Table 1. The insertion of TMPyP⁴⁺ into the layered

Chemistry Letters 2002 877

 $\begin{array}{l} \textbf{Figure 3.} \ \ Powder \ X-ray \ diffraction \ patterns \ of the (a) \ KTiNbO_5, (b) \ HTiNbO_5, \\ (c) \ PrNH_3^+TiNbO_5, \ and \ (c) \ TMPyP^{4+}TiNbO_5 \ hybrids. \end{array}$


Table 1. X-ray powder diffraction data

* *		
Compound	d_{002} /nm	$\Delta d^{\mathrm{a}}/\mathrm{nm}$
KTiNbO ₅	0.92	0.07
HTiNbO ₅	0.85	0
PrNH ₃ ⁺ TiNbO ₅	1.57	0.72
TMPyP ⁴⁺ TiNbO ₅	2.10	1.25

^aThe increase in d_{002} from that of HTiNbO₅.

titanoniobate resulted in a shift of the basal spacing (Δd) of about 1.25 nm on the basis of the basal spacing of the protonated titanoniobic acid. An inclination angle (γ) of approximately 46° against the interlayers was estimated on the basis of the gallery height (1.25 nm) and the molecular size of TMPyP⁴⁺ (ca. 3 nm^2). 16

The exchange of the propylammonium ions by the TMPyP⁴⁺ ions could be revealed by infrared spectroscopic analysis (Figure 4). The IR spectra of the product exhibited no absorption bands due to the propylammonium ions of the PrNH₃⁺TiNbO₅ intercalation compound [1507, δ (N–H) of NH₃; 1468, δ (C–H) of CH₂, etc.], although many absorption bands due to TMPyP⁴⁺ [1640, ν (C–N) of pyridyl substituent; 1563, ν (C–C) of pyrrole ring, 1457 and 1355, ν (C–N) of pyrrole ring, etc.]¹⁸ could be observed.

Figure 4. Infrared spectra of (a) $PrNH_3^+TiNbO_5$ intercalation compound, (b) $TMPyP^{4+}TiNbO_5$ intercalation compound, and (c) $TMPyP^{4+}$ in KBr.

Figure 5 showed a dependence of an incident light angle upon an intensity of polarized spectroscopy, i.e., a dichroic ratios, from which the tilt angle of TMPyP⁴⁺ molecules was confirmed to be

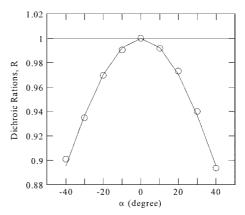


Figure 5. Dependence of the incident angle, α , on the dichroic ratios R of the porphyrin-titanoniobate hybrid thin film.

47°, in good agreement with the XRD measurements. 17 Such a porphyrin-tilted orientation can also be seen in fluorohectorite clay,3 zirconium hydrogen phosphate,5 layered titanate6 and layered niobate.7

The maroon colored porphyrin intercalated titanoniobate has Soret and Q bands showing a blue shift of 16 nm and a red shift of 8-15 nm, respectively, in compared with those of the unintercalated TMPyP⁴⁺. These results imply that the TMPyP⁴⁺ molecules are stacked in parallel orientation and interact with each other in a face-to-face manner within the interlayer spaces. 19,20

In conclusion, a unique nanostructured hybrid material has been successfully synthesised by a cation-exchange method using a PrNH₃⁺TiNbO₅ intercalation compound as the intermediate. The porphyrin was found to be inclined with a tilt angle of 46° within the interlayers of layered titanoniobate.

This work was supported by a Grant-in-Aid Fund from the Ministry of Education, Culture, Sports, Science and Technology, and by the Industrial Technology Research Grant Program for '01 of the New Energy and Industrial Technology Development Organization (NEDO). We would like express our thanks for their support.

References

- M. Ogawa and K. Kuroda, Chem. Rev., 95, 399 (1995)
- S. S. Cady and T. J. Pinnavaia, Inorg. Chem., 17, 1501 (1987).
- L. Ukraincyzyk, M. Chibwe, T. J. Pinnavaia, and S. A. Boyd, J. Phys. Chem., 98, 2668 (1994).
- K. A. Carrado, J. E. Forman, R. E. Botto, and R. E. Winans, Chem. Mater., 5, 472 (1993).
- R. M. Kim, J. E. Pillion, D. A. Burwell, J. T. Groves, and M. E. Thompson, Inorg. Chem., 32, 4509 (1993).
- T. Nakato, Y. Iwata, K. Kuroda, M. Kaneko, and C. Kato, J. Chem. Soc., Dalton Trans., 9, 1405 (1993).
- M. A. Bizeto, D. L. A. Defaria, and V. R. L. Constantino, J. Mater. Sci. Lett., 18,
- Y. Yamaguchi, T. Yui, S. Takagi, T. Shimada, and H. Inoue, Chem. Lett., 2001,
- M. Chibwe, L. Ukraincyzyk, S. A. Boyd, and T. J. Pinnavaia, J. Mol. Catal., 113, 249 (1996).
- F. Bedioui, Coord. Chem. Rev., 144, 39 (1995).
- H. Miyata, Y. Sugahara, K. Kuroda, and C. Kato, J. Chem. Soc., Faraday Trans. 1, 84, 2677 (1988)
- T. Nakato, K, Kuroda, and C. Kato, Catal. Today, 16, 471 (1993).
- A. D. Wadsley, Acta Crystallogr., 17, 623 (1964). 13
- H. Rebbah, G. Desgardin, and B. Raveau, *Mater. Res. Bull.*, **14**, 1125 (1979). H. Rebbah, M. M. Borel, and B. Raveau, *Mater. Res. Bull.*, **15**, 317 (1980).
- 15
- E. P. Giannelis, Chem. Mater., 2, 627 (1990).
- Yet unpublished results by Zhiwei Tong.
- D. W. Thomas and A. E. Martell, J. Am. Chem. Soc., 78, 1338 (1965).
- W. West and S. P. Lovell, and W. Cooper, Photogr. Sci. Eng., 14, 52 (1970).
- A. Osuka and K. Maruyama, J. Am. Chem. Soc., 110, 4454 (1988).